8.-FUNDAMENTOS NUMERICOS

 

Sistemas de numeración

Un sistema de numeración es un conjunto de símbolos y reglas que permi­ten representar datos numéricos. Los sistemas de numeración actuales son sistemas posicionales, que se caracterizan porque un símbo­lo tiene distinto valor según la posición que ocupa en la cifra.

  1.  Sistema de numeración decimal:

El sistema de numeración que utiliza­mos habitualmente es el decimal, que se compone de diez símbolos o dígi­tos (0, 1, 2, 3, 4, 5, 6, 7, 8 y 9) a los que otorga un valor dependiendo de la posición que ocupen en la cifra: unidades, decenas, centenas, millares, etc.

El valor de cada dígito está asociado al de una potencia de base 10, número que coincide con la cantidad de símbolos o dígitos del sistema decimal, y un exponente igual a la posición que ocupa el dígito menos uno, contando desde la de­recha.

En el sistema decimal el número 528, por ejemplo, significa:


5 centenas + 2 decenas + 8 unidades, es decir:

 

5*102 + 2*101 + 8*100 o, lo que es lo mismo:

 

500 + 20 + 8 = 528

 

 

En el caso de números con decimales, la situación es análoga aunque, en este caso, algunos exponentes de las potencias serán negativos, concreta­mente el de los dígitos colocados a la derecha del separador decimal. Por ejemplo, el número 8245,97 se calcularía como:


8 millares + 2 centenas + 4 decenas + 5 unidades + 9 décimos + 7 céntimos

 

8*103 + 2*102 + 4*101 + 5*100 + 9*10-1 + 7*10-2, es decir:

 

8000 + 200 + 40 + 5 + 0,9 + 0,07 = 8245,97

 sistema de numeracion binario.

El sistema de numeración binario utiliza sólo dos dígitos, el cero (0) y el uno (1).

En una cifra binaria, cada dígito tiene distinto valor dependiendo de la posición que ocupe. El valor de cada posición es el de una potencia de base 2, elevada a un exponente igual a la posición del dígito menos uno. Se puede observar que, tal y como ocurría con el sistema decimal, la base de la potencia coincide con la cantidad de dígitos utilizados (2) para representar los números.

De acuerdo con estas reglas, el número binario 1011 tiene un valor que se calcula así:


1*23 + 0*22 + 1*21 + 1*20 , es decir:

 

8 + 0 + 2 + 1 = 11


y para expresar que ambas cifras describen la misma cantidad lo escribimos así:


10112 = 1110

 

 

  1.  Conversión entre números decimales y binarios

Convertir un número decimal al sistema binario es muy sencillo: basta con realizar divisiones sucesivas por 2 y escribir los restos obtenidos en cada división en orden inverso al que han sido obtenidos.

Por ejemplo, para convertir al sistema binario el número 7710haremos una serie de divisiones que arrojarán los restos siguientes:

77 : 2 = 38 Resto: 1

38 : 2 = 19 Resto: 0

19 : 2 = 9 Resto: 1

9 : 2 = 4 Resto: 1

4 : 2 = 2 Resto: 0

2 : 2 = 1 Resto: 0

1 : 2 = 0 Resto: 1

y, tomando los restos en orden inverso obtenemos la cifra binaria:


7710 = 10011012

 

  1.  Conversión de binario a decimal

 

El proceso para convertir un número del sistema binario al decimal es aún más sencillo; basta con desarrollar el número, teniendo en cuenta el valor de cada dígito en su posición, que es el de una potencia de 2, cuyo exponente es 0 en el bit situado más a la derecha, y se incrementa en una unidad según vamos avanzando posiciones hacia la izquierda.

 

Por ejemplo, para convertir el número binario 10100112 a decimal, lo desarrollamos teniendo en cuenta el valor de cada bit:

1*26 + 0*25 + 1*24 + 0*23 + 0*22 + 1*21 + 1*20 = 83

 

 

10100112 = 8310

Sistema de numeración octal

El inconveniente de la codificación binaria es que la representación de algunos números resulta muy larga. Por este motivo se utilizan otros sistemas de numeración que resulten más cómodos de escribir: el sistema octal y el sistema hexadecimal. Afortunadamente, resulta muy fácil convertir un número binario a octal o a hexadecimal.

 

En el sistema de numeración octal, los números se representan mediante ocho dígitos diferentes: 0, 1, 2, 3, 4, 5, 6 y 7. Cada dígito tiene, naturalmente, un valor distinto dependiendo del lu­gar que ocupen. El valor de cada una de las posiciones viene determinado por las potencias de base 8.

 

Por ejemplo, el número octal 2738 tiene un valor que se calcula así:

 

 

2*83 + 7*82 + 3*81 = 2*512 + 7*64 + 3*8 = 149610

 


2738
= 149610

 

  1.  Conversión de un número decimal a octal

 

La conversión de un número decimal a octal se hace con la misma técnica que ya hemos utilizado en la conversión a binario, mediante divisiones sucesivas por 8 y colocando los restos obtenidos en orden inverso. Por ejemplo, para escribir en octal el número decimal 12210 tendremos que hacer las siguientes divisiones:

 

 

122 : 8 = 15     Resto: 2

 

15 : 8 = 1           Resto: 7

 

1 : 8 = 0               Resto: 1

 

Tomando los restos obtenidos en orden inverso tendremos la cifra octal:

 

12210 = 1728

 Conversión octal a decimal

 

La conversión de un número octal a decimal es igualmente sencilla, conociendo el peso de cada posición en una cifra octal. Por ejemplo, para convertir el número 2378 a decimal basta con desarrollar el valor de cada dígito:

 

 

2*82 + 3*81 + 7*80 = 128 + 24 + 7 = 15910

 


2378 = 15910

 

 

 

 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s